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We study the statistical mechanics of multi-index matching problems where the quenched disorder is a
geometric site disorder rather than a link disorder. A recently developed functional formalism is exploited that
yields exact results in the finite-temperature thermodynamic limit. Particular attention is paid to the zero-
temperature limit of maximal matching problems where the method allows us to obtain the average value of the
optimal match and also sheds light on the algorithmic heuristics leading to that optimal match.
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I. INTRODUCTION

Matching problems have been studied from both the per-
spectives of combinatorial optimization �1� and statistical
physics �2�. In the statistical physics approach, interest lies in
computing average properties of the matching path in sto-
chastic versions of the problem. The most general form of
the m-partite multi-index problem is stated as follows. One
has m sets of N objects and a matching consists of combining
one element from each set into a molecule or match with m
components. If in the ith match the element we choose from
set j, 1� j�m, is denoted by ij, then the cost of the ith
match is given by the entry Ci1,. . .,im

of the cost matrix. The
total cost of the matching is then given by the sum of the
costs of the N individual matches. The underlying maximum
�minimum� optimization problem consists of finding the glo-
bal match that maximizes �minimizes� this cost. The bipartite
matching problem with m=2 has been most studied, and
some analytic progress has been made for so-called “random
link” models where the elements of the cost matrix C are
chosen independently from some probability distribution
�2–4�.

Often matching problems have a geometrical origin as the
points to be matched lie in some d-dimensional domain D.
Euclidean matching problems are of practical importance,
finding applications in air traffic control �5� and the manu-
facture of printed circuits �6�. The three-dimensional Euclid-
ean matching problem, both minimal and maximal, has been
studied numerically via Monte Carlo simulations and in par-
ticular simulated annealing �7�. In these geometric problems
the matching matrix C is determined from the location of the
points using some metric on the space. As a result matrix
elements are no longer independent �for example, triangle
inequalities exist for the case when the matching matrix de-
pends on the Euclidean distance between the points�. The
random link versions can be regarded as approximations to
Euclidean models, and in minimal bipartite matching this
approximation seems rather good �8� and corrections to
account for triangular correlations have been computed �3�.

Recently, we have developed additional techniques for
analyzing Euclidean traveling-salesman-type problems
�TSPs� �9� based on functional integration and a functional
order parameter. This formalism does not yield the average
value of the optimal path for the minimal TSP because it

does not apply when the energy is rescaled to make the
ground state energy extensive. However, in the case of maxi-
mal TSP-type problems the ground state energy is extensive
without any energy rescaling and the average value of the
optimal solution can be computed exactly. The method �9�
does not rely on the replica trick; however, the results ob-
tained show that for the Euclidean TSP the system is replica
symmetric, as is the case for random link calculations �2�. In
this paper we show how the formalism of �9� can be applied
to multi-index matching problems at finite temperature and
also how it can be used to obtain the average value of the
optimal match in the maximal case. In addition the method
gives us information concerning the algorithmic heuristic
leading to the optimal path. The mathematical structure of
the multi-index matching problem in our thermodynamic for-
malism is more complicated than that of the Euclidean TSP
in that a functional order parameter appears for each of the m
sets of points. However, in the cases studied here the func-
tional order parameters are the same for each set and we find
no evidence of symmetry breaking. As a consequence of this
symmetry we find that the thermodynamics of the bipartite
matching problem and the Euclidean TSP are essentially
equivalent. For certain other multi-index problems, with
chainlike matching functions, we find relations between the
average path lengths computed in these models and the TSP.

The statistical mechanical cavity approach has recently
been applied to minimal multi-index matching problems in
the context of independent links �4�. In this problem the en-
ergy �or equivalently the temperature� is scaled to ensure that
the ground state energy, corresponding to the maximal
match, is extensive. In contrast to the bipartite matching
problem which has a replica symmetric solution, it was
shown that the multi-index matching problem for more than
two indices has a low-temperature glassy phase characterized
by replica symmetry breaking. It is therefore interesting to
see if the formalism developed in �9�, which is exact for
maximal optimization problems, shows similar behavior
when applied to multi-index matching. In all of the cases
studied here the system exhibits no such phase transition,
suggesting that they appear to be nonglassy from the statis-
tical mechanics point of view. We have not been able to carry
out the calculation in our formalism with a temperature res-
caling, which would give an extensive ground state energy
for minimal matching. It is highly probable that the rescaled
site disordered problem does exhibit a phase transition, at
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least above some critical dimension. The extension of our
functional method to the rescaled temperature regime re-
mains as a difficult and open challenge. We note, however,
that the random link matching problem without temperature
rescaling does not present any phase transition and this is
entirely compatible with our results on site disordered
matching in the same regime of scaling.

II. MODEL AND GENERAL SOLUTION

Here we define the general multi-index matching problem
with site disorder.

Consider the following m-partite matching problem with
m=K+1 sets S�0� ,S�1� , . . . ,S�K�, each set S�a� consists of N
points �r1

�a� , . . . ,rN
�a�� distributed in a common domain D in a

space of dimension d. We assume that the points are inde-
pendently distributed within the domain and that those in set
S�a� are distributed according to a probability density pa. An
individual match consists of K+1 points where one point in
each set is matched with one point in each other set. Each
match has an energy function associated with it that we de-
note by V�r�0� ,r�1� , . . . ,r�K��. The multi-index optimization
problem involves making N individual matches �Fig. 1�,
where each point is associated with one and only one match-
ing, and optimizing the total match energy. The case of
K=1 corresponds to the well-known bipartite matching
problem. A microstate of the model is specified by
��i ,�i

�1� , . . . ,�i
�K��� where the point i of the set S�0� having

position ri
�0� �1� i�N� is matched with r

�
i
�1�

�1�
, . . . ,r

�
i
�K�

�K�
in the

other sets and �i
�a� denotes the label of the element in set a

chosen to be matched with the element i in set 0. The ��a� are
permutations on the N elements of S�a�. The phase space for
multi-index matching is thus the Cartesian product ��N�K,
where �N is the permutation group on N elements. The size
of this phase space is �N!�K and the entropy is consequently
superextensive.

The Hamiltonian of the system is given by adding up the
energy for each individual match

H��1,�2, . . . ,�K� = �
i=1

N

V�ri
�0�,r

�i
�1�

�1� , . . . ,r
�i

�K�
�K� � , �1�

and the partition function for sets of N points is given by

ZN = �
��1�,��2�,. . .,��K�

exp�− �H��1,�2, . . . ,�K�� , �2�

where �=1/T and T is the canonical temperature of the
system.

The form of V can be arbitrary, but a symmetric potential
function where V�r0 , . . . ,rK� is left invariant by any rear-
rangement of its arguments is natural in this context. A
simple way of constructing such a potential is to consider the
potential to be the totally connected sum of pairwise match-
ing potentials between all pairs as shown in Fig. 2:

V�r0,r1, . . . ,rK� = �
a=1,b=1

K

VP�ra,rb� . �3�

Practically we see that matching costs of the above type are
suited to the identification of cliques or groups.

However, to make analytic progress, much of our analysis
considers potentials that are pairwise but are not symmetric.
These potentials allow the match to be represented as an
ordered path through points from each successive set as
illustrated in Fig. 3:

FIG. 1. Full match for three sets �white, black, gray� of three
points �m=3, N=3�.

FIG. 2. Individual match between four points �each in a
different set white, light gray, dark gray and black�, showing a fully
symmetric and fully connected cost function.

FIG. 3. Individual match between four points �each in a
different set white, light gray, dark gray and black�, showing an
open chain cost function.
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V�r0,r1, . . . ,rK� = �
a=1

K

VP�ra−1,ra� . �4�

This type of matching cost is of the type that one would use
if trying to reproduce trajectories from a sequence of images
of an ensemble of identical objects.

Besides this open model, a generalization is to add
VP�rK ,r0�, to arrive at the situation shown in Fig. 4 and we
shall term this a closed or cyclic model.

Because we emphasize the geometric interpretation of
pairwise matching, we will frequently take the pair potential
VP to be the Euclidean distance VP�ri−1 ,ri�= �ri−1−ri�, though
we also treat the quadratic form which seems more amenable
to analytic approaches. The case K=1 corresponds to the
Euclidean bipartite matching problem. The cyclic, K=2 tri-
partite case is symmetric and corresponds to the triangle in-
teraction, which amounts to the total length needed to form a
triangle between three points. Another symmetric possibility
for K=2, tripartite matching, that is not of the pairwise form,
is the star interaction where the three points are connected by
three lines emanating from the point that would be their
center of mass �for equal masses�

Vstar�r0,r1,r2� = �r0 − R� + �r1 − R� + �r2 − R� , �5�

where

R =
1

3
�r0 + r1 + r2� . �6�

As pointed out in �9� the disorder in this type of problem
can be encoded in the unaveraged density of the quenched
points in the domain D

�a�r� =
1

N
�
i=1

N

��r − ri
�a��; �7�

note that the value of �a averaged over the disorder is by
definition pa.

Imposing this constraint we may discard the sum over
permutations and write

ZN = CN	 

i,a

dri
�a�


r



a

��N�a�r� − �
i=1

N

��ri
�a� − r��

�exp�− ��
i

V�ri
�0�, . . . ,ri

�K��� . �8�

In the above formulation without the � function constraints
the matches chosen can use any point in the domain D; how-
ever the � function constraint allows the use of only the
points that are available in the sets Sa. The � function con-
straints that are present at each point r in the domain D are
now expressed as a functional Fourier integral �the 	
integration is along the imaginary axis�

ZN = CN� 	 

a

d�	a�

i,a

dri
�a� exp�N	 dr�

a

	a�r��a�r��
�exp�− �

ai

	a�ri
�a�� − ��

i

V�ri
�0�, . . . ,ri

�K��� . �9�

The integrals over the dynamical variables ri
�a�that are taken

to be in D may now be carried out independently, changing
the normalization and leaving an integration over only
K+1 functional variables:

ZN = CN� 	 

a

d�	a�expN�	 dr�
a

	a�r��a�r�

+ ln�	 

a

dr�a� exp�− �
a

	a�r�a��

− �V�r�0�, . . . ,r�K������ . �10�

The terms CN ,CN� ,CN� are all constants whose value is
unimportant. Now in the limit of large N we use the fact that

	 dr	a�r��a�r� →	 dr 	a�r�pa�r� + O� 1
�N

� , �11�

to eliminate the dependence on the quenched disorder in
�a�r�, and obtain

ZN � CN� 	 

a

d�	a�expN�	 dr�
a

	a�r�pa�r�

+ ln�	 dr�a� exp�− �
a

	a�r�a��

− �V�r�0�, . . . ,r�K������ . �12�

The above integral may be evaluated by the saddle point
method. The method works in this limit because the thermo-
dynamics is determined solely by the pa, which are the first
moments of the random quenched densities �a. We find the
following expression for the free energy per number of
particles, N, in each set Sa:

FIG. 4. Individual match between four points �each in a
different set white, light gray, dark gray and black�, showing a
closed chain cost function.
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− �f = max	a�	 dr�
a

	a�r�pa�r�

+ ln�	 dr�a� exp�− �
a

	a�r�a��

− �V�r�0�, . . . ,r�K����� +

N

N
. �13�

The last term is a �- and 	-independent term and is related
to the infinite-temperature entropy. It does not contribute to
the energy of the system, which is what interests us here. The
resulting saddle point equation for the 	a is

pa�ra� =
1

Z
exp�− 	a�ra�� 	 


b�a

dr�b� exp�− �
b�a

	b�r�b��

− �V�r�0�, . . . ,r�a�, . . . ,r�K��� , �14�

where

Z =	 dr�a� exp�− �
a

	a�r�a�� − �V�r�0�, . . . ,r�K��� .

�15�

One sees in the above that if 	a�r� is a solution to the
saddle point equation then so is 	a�r�+�a, where �a are
arbitrary constants. This is because the constraints
�dr pa�r�=1 are automatically satisfied and so the zero-
frequency Fourier modes of the 	a are redundant and are
zero modes of the theory. We can use one of these free zero
modes to set Z in Eq. �15� to be equal to 1. The saddle point
equation then becomes

pa�r�a�� = exp�− 	a�r�a��� 	 

b�a

dr�b� exp�− �
b�a

	b�r�b��

− �V�r�0�, . . . ,r�a�, . . . ,r�K��� , �16�

and we find that the part of the free energy relevant to the
calculation of the energy is

�f = −	 dr�
a

pa�r�	a�r� , �17�

and the average energy is given by �=��f /��. This can be
manipulated to find that, in general, the energy may be
written

� =	 

a

dr�a�V�r�0�, . . . ,r�a�, . . . ,r�K��exp�− �
b

	b�r�b��

− �V�r�0�, . . . ,r�a�, . . . ,r�K��� . �18�

We have verified the formalism for nonuniform distribu-
tions in some simple cases, but the rest of the paper will be
concerned with uniform distributions in domains of unit size.
We write sa�r�=exp�	a�r�� to obtain the equations in the
following form:

sa�r�a�� =	 

b�a

dr�b� exp�− �V�r�0�, . . . ,r�a�, . . . ,r�K���

�

b�a

1

sb�r�b��
,

� =	 

a

dr�a�V�r�0�, . . . ,r�K��

b�a

1

sb�r�b��

�exp�− �V�r�0�, . . . ,r�K��� . �19�

These equations now form the basis for the rest of the paper,
which explores their consequences.

In general Eq. �16� cannot be solved analytically; how-
ever, in the limit �→ it can be simplified by a saddle point
method if one writes sa�r�=exp�−�wa�r�� which yields

wa�r� = minr1,. . .,rK�ra=r�V�r1, . . . ,ra� − �
b�a

wb�rb�� .

�20�

The above-zero-temperature saddle point equation bears a
striking similarity to the cavity equations for random link
matching �3,4�. This correspondence may eventually be use-
ful in understanding the applicability of random-link-type
approximations to site disordered systems. When we are in-
terested in the maximum rather than the minimum problem
we can change either the sign of V or �, changing the sign of
� simply leads the min above to be changed to a max. In the
limit �→, using Eq. �17�, this yields the ground state
energy or optimal matching cost to be

�GS = �
a
	 dr wa�r� . �21�

The saddle point equations �19� are similar to those stud-
ied in our work on Hamiltonian paths but with the major
difference that there are now K+1 functional order param-
eters 	a�r�. In the case where V is a symmetric function and
all the pa are the same for each set, implicitly the case here
as we take them all to be uniform, there will clearly be a set
symmetric solution where 	a�r�=	�r�. However, it is pos-
sible that this symmetry could be spontaneously broken.
Thus, despite the fact that the matching problem superficially
looks somewhat simpler than the Hamiltonian path problem,
it has the potential to exhibit more complex behavior.

The simplest example we can consider is the bipartite
matching problem with K=1. In this case the saddle point
equations read

s0�r� =	 dr�
exp�− �V�r,r���

s1�r��
,

s1�r� =	 dr�
exp�− �V�r�,r��

s0�r��
. �22�

If one considers the set symmetric solution
s0�r�=s1�r�=stsp�r�, the resulting equation is
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stsp�r� =	 dr�
exp�− �V�r,r���

stsp�r��
. �23�

This is exactly the same equation as that occurring for the
TSP problem, but in the TSP problem stsp�r�=exp�	�r� /2�,
where 	 is again the Lagrange multiplier fixing the density
of points, and the TSP free energy per site is given by

�f tsp = −	 dr 	�r� = − 2	 dr ln�stsp�r�� . �24�

However, we see immediately that for the bipartite matching
problem the free energy, within the set symmetric solution, is
given by

�f = − 2	 dr ln�s�r�� = �f tsp. �25�

Thus the free energy of the TSP with N points is the same as
that of a bipartite match between two sets of N points. Notice
that in the TSP there are N links and in the bipartite match
there are also N links; this equivalence is conjectured to hold
for the two minimal versions in the limit where the energy is
scaled so as to become extensive as �→. If the set sym-
metric solution is indeed that valid everywhere, our result
shows the strict thermodynamic equivalence of the two mod-
els at any finite temperature and for an arbitrary distance
function.

For pairwise potentials arranged as paths, Eq. �4�, and
uniform probability density over the domain we may search
for general K solutions along the lines of the one found
above for the bipartite case. The noncyclic case turns out to
be more tractable. We search for a solution in which sa�r�
=exp�	a�r�� is the same for all sets except the first �a=0�
and last �a=K� where the ends of the matching path lie:

s�a��r� = �s�r� , a = 1, . . . ,K − 1,

sE�r� , a = 0,K .
� �26�

The saddle point equations now read

sE�r0� =	 dr1 ¯ drK

exp�− ��
a=1

K

VP�ra−1,ra��
s�r1� ¯ s�rK−1�sE�rK�

, �27�

s�r1� =	 dr0dr2 ¯ drK

exp�− ��
a=1

K

VP�ra−1,ra��
sE�r0�s�r2� ¯ sE�rK�

,

�28�

and the free energy corresponding to this saddle point is

�f = −	 dr�2 ln�sE� + �K − 1�ln�s�� . �29�

Using the structure of the pairwise potential, these equations
can be solved in terms of a set of K coupled integral
equations for the quantities ta�r�:

t0�r� =	 dr� exp�− �VP�r,r���
1

tK−1�r��
= T� 1

tK−1
� ,

�30�

t1�r� =	 dr� exp�− �VP�r,r���
1

tK−2�r��
= T� 1

tK−2
� ,

�31�

t2�r� =	 dr� exp�− �VP�r,r���
t0�r��

t1�r��tK−2�r��
= T� t0

t1tK−2
� ,

�32�

t3�r� =	 dr� exp�− �VP�r,r���� t0�r��
t2�r��tK−2�r��

� = T� t0

t2tK−2
� ,

�33�

tK−2�r� =	 dr� exp�− �VP�r,r���
t0�r��

tK−3�r��tK−2�r��

= T� t0

tK−3tK−2
� , �34�

tK−1�r� =	 dr� exp�− �VP�r,r���
1

t0�r��
= T� 1

t0
� , �35�

where we have introduced T as the integral operator appear-
ing throughout. Once the ta’s are determined the solution is
given by

sE�r� = tK−1�r� , �36�

s�r� = t0�r�tK−2�r� . �37�

This set of equations always has a solution with all ta’s taken
the same, ta�r�=stsp�r�, this then yields

sE�r� = stsp�r� , �38�

s�r� = stsp
2 �r� , �39�

and inserting this into the free energy we have

�f = − 2K	 dr ln�stsp� = K�f tsp. �40�

The interpretation is clearly that the free energy per link of
this matching problem is exactly the same as for the TSP.
This result is supported by direct Monte Carlo simulation in
the case of a two-dimensional box. This is a generalization of
the thermodynamic equivalence seen between the TSP and
the bipartite matching problem. Unfortunately, neither for
closed paths nor for fully connected matches have we found
any general results, and we shall consider only special cases
in the following section. Finally we comment that for suffi-
ciently symmetric potentials on closed domains �e.g., with
periodic boundary solutions� we find the solution sa=const
for all a. This means that the annealed approximation to the
free energy is exact �9� and it is easy to show that �GS is just
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the ground state energy of a single molecule or match with
m=K+1 sites in the case where each of the m sites is free to
move.

III. TRIPARTITE MATCHING: NUMERICAL RESULTS

Our analytic efforts have not revealed a solution for a
symmetric K=2 tripartite system other than a constant on
symmetric closed domains. We have therefore performed
some numerical simulations of the triangle potential. We
have considered two domains, a one-dimensional �1D� line
and a 2D box, each with boundaries. After preliminary tests
to estimate the strength of 1 /N corrections and the time nec-
essary to equilibrate, we choose the following Monte Carlo
parameters: N=1000, equilibration for 1�106 steps, and
measurements taken over the succeeding 1�106 steps. En-
ergies are averaged over 100 samples with different sets of
random points. Our codes are checked by showing that the
bipartite K=1 case agrees with the TSP result.

In Fig. 5 the Monte Carlo results for the energy are con-
fronted with a numerical �iterative� solution of the equations.
We find that, in all cases, the iterative approach converges to
a symmetric solution with all sa�r�’s the same, even when
each sa�r� is seeded with rather different initial conditions. In
two dimensions, the iterative solution is slow for a reason-
able discretization of the domain; however, we find that for
the temperatures we consider, the solutions are smooth and
the procedure gives good results even for a discretization
with only 400 points.

We have also considered tripartite matching with the star
potential and again see no evidence for breaking of the
symmetry between the sets.

IV. ZERO-TEMPERATURE RESULTS IN ONE AND TWO
DIMENSIONS AND CORRESPONDING HEURISTICS

In this section we consider one- and two-dimensional
examples where our formalism can solve the original maxi-

mal optimization problem. We study Eqs. �20� and �21� and
find that, as was the case for the TSP �9�, the method of
solution throws light on local heuristics that might be used to
solve specific instances.

First consider maximal tripartite matching in one dimen-
sion with a triangular potential based on a pairwise potential
that is simply the distance between the points,

Vtriangle�x0,x1,x2� = �x0 − x1� + �x1 − x2� + �x2 − x0�

= 2�max�x0,x1,x2� − min�x0,x1,x2�� .

�41�

Evidently the location of the middle point does not contrib-
ute to the potential. We search for a piecewise linear function
w�x� consisting of three linear sections evenly dividing the
unit interval as shown in Fig. 6. A 1/3 jump heuristic guesses
that the maximum occurs for points arranged as shown in
Fig. 7. This basically means that the match consists of a
central point in the central third of the interval, matched with
points in the first and last third, each at a distance of a third
from the central point. In this case the Eq. �20� can be written

w�x� + w�x + 1/3� + w�x + 2/3�

= Vtriangle�x,x + 1/3,x + 2/3� = 4/3, �42�

where 0�x�1/3. This of course immediately gives the av-
erage value of 4 /3 per match in the optimal match. We now
make a piecewise linear anzatz for w�x� �which is symmetric
about x=1/2�

FIG. 5. Tripartite matching with a triangular potential in two
dimensions. Points are from Monte Carlo simulations �the error bars
are too small to show� and the continuous line is an iterative solu-
tion of Eq. �16�. Negative temperatures correspond to the maximal
problem.

FIG. 6. The function w�x� for tripartite matching on a one-
dimensional line, obtained by numerically solving Eq. �19� for
�=70.0. The parameters agree with the solution based on a greedy
heuristic discussed in the text.

FIG. 7. Arrangement of points for the one-third jump
heuristic.
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w�x� = � a�x −
1

2
� + b for x � �0,

1

3
� � �2

3
,1� ,

a��x −
1

2
� + b� for x � �1

3
,
2

3
� . �

�43�

Immediately one sees from Eq. �42� that we must have
a�=0. Now substituting this into Eq. �20� we find

4

3
a + 2b + b� =

4

3
. �44�

The coefficient a can be determined by looking locally
at Eq. �20� when x�� 1

3 , 2
3
� and, writing x1=x− 1

3 +�1 and
x2=x+ 1

3 +�2, this gives

b� = max
�1,�2

�4

3
+ 2��2 − �1� − a��2 − �1� −

2

3
a − 2b� �45�

and the local stationarity with respect to �1 and �2 then gives
us that a=2. Now we assume continuity of w, which gives

b� =
2

9
. �46�

This thus yields the solution for Eq. �20� in complete agree-
ment with the numerical resolution of the low-temperature
saddle point equations shown in Fig. 6.

An alternative heuristic for this triangular distance
potential is the greedy heuristic with the arrangement of
points shown in Fig. 8. In this case the maximization
equation is

w�x� + w�2/3 − x� + w�1 − x� = Vtriangle�x,2/3 − x,1 − x�

= 2�1 − 2x� . �47�

Interestingly, despite the fact that the heuristic here is differ-
ent it yields the same function w�x�, and consequently the
same average value per match of the optimal match. This is
presumably a peculiarity of linear pairwise potentials in one
dimension, and a similar phenomenon is seen for the
maximal TSP �9�.

These issues generalize to other cyclic �and possibly fully
connected� potentials in one-dimensional m-partite matching.
The star potential based on the same distance metric does not
lead to such a simple solution as the locations of all three
points are important and w�x� is no longer piecewise linear.

Now, remaining in one-dimension, consider the triangle
potential built from a quadratic pairwise potential. The loca-
tions of all three points are needed to determine the cost of a
match �in contrast to the linear distance function�, and it is
harder to guess a heuristic. However, numerical experiments
hint that the solution w�x� is quadratic so we try the anzatz

w�x�=a+b�x− 1
2

�2 �which respects the symmetry about the
midpoint x=1/2� in the maximization equation

w�x� = max
x1,x2

��x1 − x�2 + �x2 − x�2 + �x1 − x2�2 − w�x1� − w�x2�� .

�48�

The maximization equations for the right hand side yield

�2 − b�x1 − x2 = x −
1

2
b ,

�2 − b�x2 − x1 = x −
1

2
b . �49�

A manifestly nonoptimal solution to the above is x2=x3 and
to avoid this we require the above equation to have more
than one solution; this means that b=1 or 3. The choice
b=1 yields x=1/2 which is clearly generally not the case.
The choice b=3 yields x+x1+x2=3/2 which can be written
as

1

3
�x + x1 + x2� =

1

2
, �50�

meaning that the center of mass of optimal triangles is in the
center of the interval. Using this condition in the maximal
equation, all parameters are determined, we find that a=0
and the energy is given by 3/4 which can further be checked
by numerical iteration of Eq. �16�. The condition above is not
a full heuristic in that it does not determine the location of all
points in the match when given just one. However, it is sup-
ported by Monte Carlo simulations where the sum of the
coordinates of all matching triangles is a bell-shaped distri-
bution with correct mean, and variance decreasing rapidly
with temperature. We expect this result to generalize to
m-partite matching with a cyclic potential with quadratic
pairwise VP. It also generalizes to a star potential with qua-
dratic VP where we find energy 1/4. Moreover, although it is
not an exact solution, the quadratic form of w�x� is a good
approximation even at quite elevated temperatures.

The amenability of quadratic potentials carries over to
two dimensions. We consider tripartite matching with a tri-
angle potential in a disk so as to preserve rotational symme-
try and take w�r� to be independent of angle. The function to
be maximized is smooth, and by differentiating we find that
a symmetric maximum occurs when the center-of-mass con-
dition r1+r2+r3=0 holds. As in the one-dimensional case
this is not a full heuristic; however, it is sufficient to deter-
mine the energy, which is 9 /2�. This is consistent with nu-
merical iteration of Eq. �16� at low temperature, though in
two dimensions numerical resolution of the saddle point at
low temperatures is difficult. Furthermore Monte Carlo
simulations indicate that the center -of-mass condition in-
deed becomes sharper as the temperature is reduced. A spe-
cific heuristic which yields this energy makes greedy
matches based on equilateral triangles with center at the ori-
gin. The same heuristic can be used in the case of a triangle
potential in two dimensions based on a linear distance pair-
wise potential; it leads to an energy of 2�3/�, but although
this is in good agreement with numerical results we have not

FIG. 8. Arrangement of points for the greedy heuristic.
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been able to prove that it is the true maximum.

V. CONCLUSIONS

We have presented a statistical-mechanics-based approach
to multi-index matching problems with site disorder, specifi-
cally when the points to be matched are randomly distributed
in a domain D. The cost functions considered are functions
of the relative distances between the points and are conse-
quently correlated, in contrast to the random link model. We
have analyzed the m-partite version of these problems where
each match contains one element from m distinct sets, each
of which can in principle have different probability distribu-
tions in the domain D. In the thermodynamic limit the sys-
tem is described by m functional order parameters. We have
concentrated on maximal matching problems as the ground
state energy in this case is extensive with the scaling we
employ.

In the special cases where the cost function is sufficiently
symmetric and the probability distributions of each set are
the same we find set symmetric solutions where the func-
tional order parameter of each set is the same. We have not
found any evidence for a breaking of this symmetry; an open
question is whether there are geometries �e.g., effects of
boundaries and spatial dimensionality� where this symmetry
is spontaneously broken.

For open chain potentials �which of course include bipar-
tite matching� we find a solution to the saddle point equa-
tions that gives exactly the same free energy as the traveling
salesman problem with the same number of links. Further-

more, this equivalence holds at all temperatures and is inde-
pendent of the precise functional form of the pairwise
potential from which the chain potential is constructed. In-
terestingly this observation is analogous to an equivalence
that is conjectured to hold between Euclidean bipartite
matching and the Euclidean TSP in the zero-temperature
limit of the minimal problem, where the cost function is
scaled to give an extensive ground state energy.

As in the TSP we find that the zero-temperature saddle
point equations can be solved via Ansätze inspired by heu-
ristics to find the optimal match. We have been able to ana-
lytically solve the saddle point equations for the function w
in a number of instances of maximal matching in one and
two dimensions. Also we have numerically verified that the
average optimal match is accurately predicted and that the
heuristic that was used to solve the saddle point equation is
indeed that associated with the optimal match. Finally, we
remark that knowledge of the function w does not completely
specify a heuristic; however, it does give some partial, po-
tentially useful, information about the heuristic. Indeed, we
have demonstrated that two completely different heuristics
can give the same average of the optimal match for a simple
Euclidean tripartite-matching problem in one dimension.
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